Novel Computational Analysis of Left Atrial Anatomy Improves Prediction of Atrial Fibrillation Recurrence after Ablation
نویسندگان
چکیده
The left atrium (LA) can change in size and shape due to atrial fibrillation (AF)-induced remodeling. These alterations can be linked to poorer outcomes of AF ablation. In this study, we propose a novel comprehensive computational analysis of LA anatomy to identify what features of LA shape can optimally predict post-ablation AF recurrence. To this end, we construct smooth 3D geometrical models from the segmentation of the LA blood pool captured in pre-procedural MR images. We first apply this methodology to characterize the LA anatomy of 144 AF patients and build a statistical shape model that includes the most salient variations in shape across this cohort. We then perform a discriminant analysis to optimally distinguish between recurrent and non-recurrent patients. From this analysis, we propose a new shape metric called vertical asymmetry, which measures the imbalance of size along the anterior to posterior direction between the superior and inferior left atrial hemispheres. Vertical asymmetry was found, in combination with LA sphericity, to be the best predictor of post-ablation recurrence at both 12 and 24 months (area under the ROC curve: 0.71 and 0.68, respectively) outperforming other shape markers and any of their combinations. We also found that model-derived shape metrics, such as the anterior-posterior radius, were better predictors than equivalent metrics taken directly from MRI or echocardiography, suggesting that the proposed approach leads to a reduction of the impact of data artifacts and noise. This novel methodology contributes to an improved characterization of LA organ remodeling and the reported findings have the potential to improve patient selection and risk stratification for catheter ablations in AF.
منابع مشابه
Clinical Significance of P Wave Dispersion in Prediction of Atrial Fibrillation in Patients with Acute Myocardial Infarction
Background: P wave dispersion (PWD) is defined as the difference between the maximum P wave duration (Pmax) and the minimum P wave duration (Pmin) in 12-leads of the surface electrocardiography. The aim of this study was to evaluate the values of PWD during atrial fibrillation (AF) after acute myocardial infarction (AMI). Methods: We prospectively evaluated atrial rhythms of 350 patients (251 m...
متن کاملCardiac Remodeling After Atrial Fibrillation Ablation.
Radiofrequency catheter ablation procedures are considered a reasonable option for patients with symptomatic, drug refractory atrial fibrillation (AF). Ablation procedures have been reported to effectively restore sinus rhythm and provide long-term relief of symptoms. Both electrical and structural remodeling occurs with AF. A reversal of the electrical remodeling develops within 1 week after r...
متن کاملEffects Of Fast Pathway Ablation On The Concealment Zone And Electrophysiological Behavior Of AV-Node During Atrial Fibrillation.
Objectives: Dual pathways have a determinant role in the occurrence of atrio nodal tachyarrhythmia (AVNRT). The aim of present study is to determine the role of slow pathway (SP) in the concealment zone and protective role of AV node during atrial fibrillation (AF). Material &Methods: In 7 isolated nodal rabbit preparation zone of concealment and concealed conduction is quantified by Specif...
متن کاملThe role of left atrial deformation parameters in the prediction of atrial fibrillation recurrence after cryoballoon ablation therapy
متن کامل
Improved left atrial imaging in atrial fibrillation patients using novel ECG-gated vs. conventional non-gated cardiac MRA
Background In patients undergoing atrial fibrillation (AF) procedures, imaging of the left atrium (LA) and pulmonary veins (PV) is important for pre-ablation planning and to identify post ablation complications. Conventional MRA protocols use first-pass, non-gated sequences that require long breathholds. Quality of non-gated MRA’s can be challenging in sick or sedated patients. We developed a n...
متن کامل